

PG - 258

III Semester M.Sc. Examination, January 2018 (CBCS Scheme) **MATHEMATICS**

M302T: Mathematical Methods

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer any five full questions.

2) All questions carry equal marks.

Answer any five full questions.

1. a) Convert the following Initial Value problem into an integral equation y'' + y = x, y(0) = 0, y(1) = 0.

b) Solve the following integral equation using the method of degenerate kernel

$$u(x) = \lambda \int_{0}^{2\pi} \cos(x+t)u(t)dt.$$

2. a) Solve $g(x) = e^x - \int_0^x e^{x-t} g(t) dt$ by Laplace transform method. 7

b) Find the Neumann series solution and resolvent Kernel for the integral

$$g(x) = (1-x) + \int_{0}^{x} (x-t)g(t)dt$$
.

3. a) Determine an asymptotic expansion for the integral of the form

$$I(X) = \int_{0}^{X} t^{-\frac{1}{2}} e^{-t} dt \text{ as } X \to \infty.$$

b) Use Laplace method to obtain the asymptotic expansion of

$$\int_{0}^{\frac{\pi}{2}} e^{-x \tan t} dt \text{ as } x \to \infty.$$

7

7

7

- 4. a) Evaluate the following using Watson's lemma $|(x)| = \int_0^5 \frac{e^{-xt}}{1+t^2} dt$.
 - b) Find the leading order term of $I(x) = \int_0^\infty \cos(xt^2 t) dt$ using stationary phase method.
- 5. a) Solve $\frac{dy}{dx} = x + y^2$; y(0) = 1 by Runge-Kutta method of four-slopes. Obtain y(0.1) by taking $\Delta x = 0.05$.
 - b) Solve by classical Runge-Kutta explicit method of two-slopes:

$$\frac{dy}{dx} = x - y; \ y(0) = 0,$$

$$\frac{dz}{dx} = y - x; z(0) = 1,$$

Choose $\Delta x = 0.05$ and obtain y(0.05).

- 6. Derive any multi-step (Predictor-Corrector) method of Adam to find a numerical solution of $\frac{dy}{dx} = f(x, y(x)); \quad y(x_0) = y_0.$
- 7. a) Given the IBVP

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \ 0 \le x \le 1; \ t \ge 0,$$

Subject to $u(x, 0) = x(1 - x), 0 \le x \le 1$,

$$u(0, t) = 0,$$

$$u(1, t) = 0, t \ge 0,$$

Obtain the solution by Schmidt finite-difference method.

Choose
$$\Delta x = \frac{1}{4}$$
 and $\Delta t = \frac{1}{64}$ and find $u\left(\frac{1}{4}, \frac{1}{64}\right)$, $u\left(\frac{1}{2}, \frac{1}{64}\right)$ and $u\left(\frac{3}{4}, \frac{1}{64}\right)$.

b) Show that the Schmidt finite difference method is conditionally stable.

7

8. a) Using the explicit finite-difference method find an approximate solution of the one-dimensional wave equation

7

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}; \, 0 \leq x \leq 1; \, t \geq 0 \, ,$$

subject to u(x, 0) = x(1 - x)

$$\frac{\partial u}{\partial t}(x,0) = 0, 0 \le x \le 1$$

$$u(0, t) = 0,$$

$$u(1, t) = 0, t > 0.$$

Choose $\Delta X = \frac{1}{4}$ and $\Delta t = \frac{1}{64}$. Obtain the solution at first-time level.

b) Derive the finite difference approximation for second order spatial derivative in the case of a non-rectangular region.

7